Ïóáëèêàöèè Êðîòà À.Ì.
English
Ìîíîãðàôèè
1. Êðîò À. Ì. Äèñêðåòíûå ìîäåëè äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ïîëèíîìèàëüíîé àëãåáðû. Ìí.: Íàâóêà i òýõíiêà, 1990.– 312 c.
2. Êðîò À. Ì., Ìèíåðâèíà Å.Á. Áûñòðûå àëãîðèòìû è ïðîãðàììû öèôðîâîé ñïåêòðàëüíîé îáðàáîòêè ñèãíàëîâ è èçîáðàæåíèé. Ìí.: Íàâóêà i òýõíiêà, 1995.– 407 c.
3. Êðîò À. Ì. Ñòàòèñòè÷åñêàÿ òåîðèÿ ôîðìèðîâàíèÿ ãðàâèòèðóþùèõ êîñìîãîíè÷åñêèõ òåë. Ìí: Áåëàðóñ. íàâóêà, 2012. – 448 c.
4. +Krot, À.Ì. A Statistical Theory of Gravitating Body Formation in Extrasolar Systems/ A.M. Krot. – Cambridge, Newcastle upon Tyne, etc.: Cambridge Scholars Publishing, 2021. – 817p.
Âûáðàííûå ñòàòüè
1. Êðîò, À. Ì. Îá îäíîì êëàññå îïåðàòîðîâ îáîáùåííîãî ñäâèãà â òåîðèè ñèãíàëîâ è ñèñòåì / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1986. – Ò. 31, ¹ 8. – Ñ.1563-1570. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. On a class of generalized shift operators in the theory of signals and systems / A. M. Krot // Soviet J. Comm. Tech. Electron. – 1986. – Vol. 31, no. 12. – P. 110-118. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,359)).
2. Êðîò, À. Ì. Ñèíòåç àëãîðèòìîâ äèñêðåòíîãî ïðåîáðàçîâàíèÿ Ôóðüå äëÿ äåéñòâèòåëüíûõ ïîñëåäîâàòåëüíîñòåé íà îñíîâå ïîëèíîìèàëüíîé àëãåáðû / À. Ì. Êðîò, Å. Á. Ìèíåðâèíà // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1987. – Ò. 32, ¹ 5. – Ñ.1217-1229. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Synthesis of digital Fourier transformation algorithms for real sequences on the basis of polynomial algebra / A. M. Krot, H. B. Minervina // Soviet J. Comm. Tech. Electron. – 1987. – Vol. 32, no. 11. – P. 9-19. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0, 359)).
3. Êðîò, À. Ì. Àíàëèç ëèíåéíûõ äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ïîëèíîìèàëüíûõ ïðåîáðàçîâàíèé ÷èñëîâûõ ïîñëåäîâàòåëüíîñòåé / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1988. – Ò. 33, ¹7. – Ñ.1458-1466. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Analysis of linear dynamic systems based on polynomial transformations of numerical sequences / A. M. Krot // Soviet J. Comm. Tech. Electron. – 1989. – Vol. 34, no. 1. – P. 6-13. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,359)).
4. Êðîò, À. Ì. Îá îäíîì êëàññå äèñêðåòíûõ ñëó÷àéíûõ ïðîöåññîâ, íåñòàöèîíàðíûõ îòíîñèòåëüíî îïåðàòîðà îáîáùåííîãî ñäâèãà / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1988. – Ò. 33, ¹ 12. – Ñ. 2515-2523. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Class of discrete random processes, nonstationary relative to a generalized shift operator. / A. M. Krot // Soviet J. Comm. Tech. Electron. – 1989. – Vol. 34, no. 8. – P. 23-31. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0, 359)).
5. Êðîò, À. Ì. Ñïåêòðàëüíûé àíàëèç êëàññà íåñòàöèîíàðíûõ ñëó÷àéíûõ ïðîöåññîâ â äèñêðåòíûõ áèîðòîãîíàëüíûõ áàçèñàõ / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1989. – Ò. 34, ¹ 1. – Ñ. 59-68. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Spectral analysis of a class of nonstationary random processes in discrete biorthogonal bases / A. M. Krot // Soviet J. Comm. Tech. Electron. – 1989. – Vol. 34, no. 12. – P. 51-59. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,359)).
6. Êðîò, À. Ì. Àëãîðèòìû áûñòðîãî ïðåîáðàçîâàíèÿ Ôóðüå äëÿ äåéñòâèòåëüíûõ è ýðìèòîâî-ñèììåòðè÷íûõ ïîñëåäîâàòåëüíîñòåé / À. Ì. Êðîò, Å. Á. Ìèíåðâèíà // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. – 1989. – Ò. 34, ¹2. – Ñ. 369-376. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Fast Fourier transform algorithms for the real and Hermitian-symmetrical sequences / A. M. Krot, H. B. Minervina // Soviet J. Comm. Tech. Electron. – 1990. – Vol. 34, no. 12. – P. 122-129. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,359)).
7. Êðîò, À. Ì. Ìåòîä ñîáñòâåííûõ ïðåîáðàçîâàíèé â ðàçëè÷íûõ ïîëÿõ äëÿ âû÷èñëåíèÿ öèêëè÷åñêèõ ñâåðòîê è äèñêðåòíîãî ïðåîáðàçîâàíèÿ Ôóðüå / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè. – 1989. – Ò. 29, ¹ 5. – Ñ. 675-692. (Ïåðåèçäàíà â Âåëèêîáðèòàíèè: Krot, A. M. The method of eigentransforms in differetnt fields for computing cyclic convolution and discrete Fourier transforms / A. M. Krot // Comput. Maths Math. Phys. – 1989. – Vol. 29, no. 3. – P. 23-34. (Pergamon Press, èìïàêò-ôàêòîð æóðíàëà – 0,585)).
8. Êðîò, À. Ì. Ñèíòåç àëãîðèòìîâ ÁÏÔ ïî ðàñùåïëÿåìîìó îñíîâàíèþ äëÿ äåéñòâèòåëüíûõ è ýðìèòîâî-ñèììåòðè÷íûõ ïîñëåäîâàòåëüíîñòåé / À. Ì. Êðîò, Å. Á. Ìèíåðâèíà // Èçâ. ÂÓÇîâ ÑÑÑÐ. Ðàäèîýëåêòðîíèêà. – 1989. – Ò.32, ¹ 12. – Ñ. 12-17. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Synthesis of fast-Fourier-transform (FFT) split-radix algorithms for real-valued and Hermite-symmetrical series / A. M. Krot, H. B. Minervina // Radioelectronics and Communication Systems. – 1989. – Vol. 32, no. 12. – P. 10-15. (Allerton Press, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,137)).
9. Êðîò, À. Ì. Ñèíòåç áûñòðûõ àëãîðèòìîâ ñîáñòâåííûõ ïðåîáðàçîâàíèé äèñêðåòíûõ ñâåðòîê â ðàöèîíàëüíîì è äåéñòâèòåëüíîì ïîëÿõ / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. –1990. – Ò. 35, ¹ 2. – Ñ. 372-381. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Synthesis of fast proper transformation algorithms for discrete convolution in rational and real fields / A. M. Krot // Soviet J. Comm. Tech. Electron. – 1990. – No. 15. – P. 16-25. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,359)).
10. Êðîò, À. Ì. Åäèíûé ïîäõîä ê âû÷èñëåíèþ ñâåðòîê è äèñêðåòíîãî ïðåîáðàçîâàíèÿ Ôóðüå íà îñíîâå ñîáñòâåííûõ ïðåîáðàçîâàíèé â ðàöèîíàëüíîì è äåéñòâèòåëüíîì ïîëÿõ / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Ðàäèîòåõíèêà è ýëåêòðîíèêà. –1990. – Ò. 35, ¹ 4. – Ñ. 805-815. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. A Unified approach to calculating convolutions and the discrete Fourier transform based on proper transforms in rational and real fields / A. M. Krot // Soviet J. Comm. Tech. Electron.: – 1991. – No. 2. – P. 26-34. (Scripta Technica, Inc., èìïàêò-ôàêòîð æóðíàëà – 0,359)).
11. Êðîò, À. Ì. Î êëàññå äèñêðåòíûõ êâàçèñòàöèîíàðíûõ ëèíåéíûõ äèíàìè÷åñêèõ ñèñòåì / À. Ì. Êðîò // Äîêëàäû ÀÍ ÑÑÑÐ. –1990. – Ò. 313, ¹6. – Ñ. 1376-1380. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. On a class of discrete quasistationary linear dynamic systems / A. M. Krot // Sov. Phys. Dokl. – 1990. – Vol. 35, no. 8. – P. 711-713. (Èìïàêò-ôàêòîð æóðíàëà – 0, 473)).
12. Êðîò, À. Ì. Î ìóëüòèïëèêàòèâíîé ñëîæíîñòè áèëèíåéíûõ ôîðì, äëÿ êîòîðûõ ïðåîáðàçîâàíèå Âàíäåðìîíäà ÿâëÿåòñÿ ñîáñòâåííûì / À. Ì. Êðîò // Äîêëàäû ÀÍ ÑÑÑÐ. –1990. – Ò. 314, ¹ 6. – Ñ. 1312-1315. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. On the multiplicative complexity of bilinear forms for which the Vandermonde transformation is an eigentransformation / A. M. Krot // Sov. Math. Dokl. – 1991. – Vol. 42, no. 2. – P. 646-650. (Èìïàêò-ôàêòîð æóðíàëà – 0, 307)).
13. Êðîò, À. Ì. Î âû÷èñëèòåëüíîé ñëîæíîñòè îáîáùåííûõ ÊN-ñâåðòîê è àëãîðèòìîâ áûñòðîãî ïðåîáðàçîâàíèÿ Âàíäåðìîíäà / À. Ì. Êðîò // ÀÍ ÑÑÑÐ. Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè. –1990. – Ò. 30, ¹ 11. – Ñ. 1625-1637. (Ïåðåèçäàíà â Âåëèêîáðèòàíèè: Krot, A. M. Computational complexity of generalized KN-convolutions and the fast Vandermonde transform algorithm / A. M. Krot // Comput. Maths Math. Phys. – 1990. – Vol. 30, no. 6. – P. 17-26. (Pergamon Press, èìïàêò-ôàêòîð æóðíàëà – 0, 585)).
14. Êðîò, À. Ì. Ñïåêòðàëüíîå ïðåäñòàâëåíèå ïîñëåäîâàòåëüíîñòåé íà ïîëå êëàññîâ âû÷åòîâ / À. Ì. Êðîò, Å. Á. Ìèíåðâèíà // Ýëåêòðîííîå ìîäåëèðîâàíèå. –1991. – Ò. 13, ¹ 1. – Ñ. 9-13.
15. Êðîò, À. Ì. Àíàëèç è ãåíåðèðîâàíèå èíôîðìàöèîííûõ ïîòîêîâ â çàäà÷àõ ìîäåëèðîâàíèÿ äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ïîëèíîìèàëüíîé àëãåáðû: àâòîðåôåðàò äèññ. äîêòîðà òåõí. íàóê / À. Ì. Êðîò; ÈÒÊ ÀÍ ÁÑÑÐ. – Ìèíñê, 1991. – 32 ñ.
16. Krot, A. M. Comment: Conjugate pair fast Fourier transform / A. M. Krot, H. B. Minervina // Electronics Letters: – 1992. – Vol. 28, No. 10. – P. 1143-1144. (IEE, èìïàêò-ôàêòîð æóðíàëà – 1,152).
17. Krot, A. M. New fast algorithms for filtering and interpolating digital signals and images / A. M. Krot // Pattern Recognition and Image Analysis (Advances in Mathematical Theory and Applications). – 1993. – Vol. 3, No. 2. – P. 126-136. (Interperiodica Publ.).
18. Êðîò, À. Ì. Áûñòðûé àëãîðèòì âû÷èñëåíèÿ îáðàòíîé ñâåðòêè äëÿ âîññòàíîâëåíèÿ ñèãíàëîâ è èçîáðàæåíèé / À. Ì. Êðîò, À. Ò. Êàñüêî, Å. Á. Ìèíåðâèíà // Æóðíàë âû÷èñë. ìàòåì. è ìàòåì. ôèçèêè. –1996. – Ò. 36, ¹ 2. – Ñ. 164-175. (Ïåðåèçäàíà â Âåëèêîáðèòàíèè: Krot, A. M. A fast algorithm for calculating the inverse convolution for signal and image reconstruction / A. M. Krot, A. T. Kasʼko, H. B. Minervina // Comput. Maths Math. Phys. – 1996. – Vol. 36, no. 2. – P. 269-277. (Pergamon Press, èìïàêò-ôàêòîð æóðíàëà – 0,585)).
19. Êðîò, À. Ì. Ëîêàëüíî-òîïîëîãè÷åñêèé ìåòîä îïðåäåëåíèÿ ìèíèìàëüíîé ðàçìåðíîñòè âëîæåíèÿ õàîòè÷åñêîãî àòòðàêòîðà / À. Ì. Êðîò, Â. Ô. Äàéëþäåíêî // Äîêëàäû ÀÍ Áåëàðóñè. –1996. – Ò. 40, ¹ 3. – Ñ. 70-75.
20. Êðîò, À. Ì. Òåîðèÿ è ìåòîäû äèíàìè÷åñêèõ ñèñòåì äëÿ ðåøåíèÿ çàäà÷ îáðàáîòêè ñèãíàëîâ / À. Ì. Êðîò // Óñïåõè ñîâðåìåííîé ðàäèîýëåêòðîíèêè. –1996. – ¹ 6. – Ñ. 3-18.
21. Êðîò, À. Ì. Ñèíòåç áûñòðûõ àëãîðèòìîâ äëÿ ðåøåíèÿ çàäà÷ îïòèìàëüíîãî äèñêðåòíîãî óïðàâëåíèÿ ìåòîäîì ïîëèíîìèàëüíûõ óðàâíåíèé / À. Ì. Êðîò // Àâòîìàòèêà è òåëåìåõàíèêà. –1996. – ¹ 8. – Ñ. 22-35. (Ïåðåèçäàíà â ÑØÀ: Krot, A. M. Synthesizing fast algorithms for optimal discrete control by the method of polynomial equations / A. M. Krot // Automation and Remote Control. – 1996. – Vol. 57, no. 8. – P. 1079-1090. (Plenum Publ. Co., èìïàêò-ôàêòîð æóðíàëà – 0,265)).
22. Êðîò, À. Ì. Ñòàòèñòè÷åñêàÿ ìîäåëü ãðàâèòàöèîííîãî âçàèìîäåéñòâèÿ ÷àñòèö / À. Ì. Êðîò // Óñïåõè ñîâðåìåííîé ðàäèîýëåêòðîíèêè. –1996. – ¹ 8. – Ñ. 66-81.
23. Krot, A. M. An efficient procedure for restoration of signals and image on the basis of a fast algorithm of convolution inversion / A. M. Krot, H. B. Minervina // Pattern Recognition and Image Analysis. –1996. – Vol. 6, No. 3. – P. 582-591.
24. Krot, A. M. Coding of images based on finite algebraic structures and fast convolution algorithm / A. M. Krot, M. N. Dolgikh, N. A. Romanovskaya // Pattern Recognition and Image Analysis. – 1997. –Vol. 6, No. 3079. – P. 782-790.
25. Êðîò, À. Ì. Îïðåäåëåíèå ìèíèìàëüíîé ðàçìåðíîñòè âëîæåíèÿ õàîòè÷åñêîãî àòòðàêòîðà íà îñíîâå ëîêàëüíî-òîïîëîãè÷åñêîãî àíàëèçà ôàçîâûõ òðàåêòîðèé / À. Ì. Êðîò, Â. Ô. Äàéëþäåíêî // Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè: ÌÀÈÊ Íàóêà. –1997. – Ò. 37, ¹ 3. – Ñ. 315-324. (Ïåðåèçäàíà â Âåëèêîáðèòàíèè: Krot, A. M. Calculation of the minimal embedding dimension of a chaotic attractor on the basis of local topological analysis of phase trajectories / A. M. Krot, V. F. Dailydenko // Comput. Maths Math. Phys. – 1997. – Vol. 37, no. 3. – P. 311-319. (Pergamon Press, èìïàêò-ôàêòîð æóðíàëà – 0,585)).
26. Êðîò, À. Ì. Ìåòîäû è ìèêðîýëåêòðîííûå ñðåäñòâà öèôðîâîé ôèëüòðàöèè ñèãíàëîâ è èçîáðàæåíèé íà îñíîâå òåîðåòèêî-÷èñëîâûõ ïðåîáðàçîâàíèé / À. Ì. Êðîò, Â. Ô. Êðàâ÷åíêî // Óñïåõè ñîâðåìåííîé ðàäèîýëåêòðîíèêè. –1997. – ¹ 6. – Ñ. 3-31.
27. Krot, A. M. Algorithms and the multiplicative complexity of the reduction a modulo arbitrary polynomial, generalized KN-convolution and fast Vandermonde transform / A. M. Krot // Proc. of 13th Intern. Conf. on Digital Signal Proc. (DSP'97) / Greece — Santorini: 1997. — Vol. 2. — P. 893-897.
28. Krot, A. M. Algorithms and the multiplicative complexity of the reduction a modulo arbitrary polynomial, generalized KN-convolution and fast Vandermonde transform / A. M. Krot, N. N. Prokudina // Proc. of 13th Intern. Conf. on Digital Signal Proc. (DSP'97) / Greece — Santorini: –1997. – Vol. 2. – P. 587-590.
29. Krot, A. M. Algorithms and the multiplicative complexity of the modulo arbitrary polynomial reduction for the generalized KN-convolution and of the fast Vandermonde transform / A. M. Krot // Electromagnetic Waves &Electronic Systems. – 1998. – Vol. 3, No. 1. – P. 48-69.
30. Krot, A. M. Minimal multiplicative complexity and fast restoration algorithm of digital signals and images / A. M. Krot, H. B. Minervina // Proc. of SPIE 12th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 13-17 Apr. / USA — Orlando, Florida: – 1998. – Vol. 3374. – P. 426-435.
31. Krot, A. M. Fast reduction a modulo polynomial and fast Vandermonde transform based on fast Fourier transform algorithms / A. M. Krot // Proc. of SPIE 12th Annual Intern. Symposium on Aero-space / Defense Sensing, Simulation, and Controls (AeroSense), 13-17 Apr. / USA — Orlando, Florida: – 1998. – Vol. 3374. – P. 505-514.
32. Krot, A. M. Fast algorithms for reduction a modulo polynomial and Vandermonde transform using FFT / A. M. Krot, H. B. Minervina // Proc. of IX European Signal Processing Conference, (EUSIPCO-98), 8-11 September / Greece —Rhodes: – 1998. – Vol. 1. – P. 173-176.
33. Krot, A. M. Identification of discrete input nonlinear systems for digital chaotic signal processing / A. M. Krot, M. A. Shcherbakov // in "Recent Advances in Information Science and Technology", World Scientific. – Singapore, New Jersey, London, Hong Kong: 1998. – P. 251-253.
34. Krot, A. M. Identification of discrete input nonlinear systems for digital chaotic signal processing / A. M. Krot, M. A. Shcherbakov // Proc. of 2nd IMACS/IEEE International Conference on: Circuits, Systems and Computers (IMACS-CSC'98). –1998. – Vol. 2. – P. 795-797.
35. Krot, A. M. An algorithm for fast polynomial reduction in digital signal processing problems / A. M. Krot, H. B. Minervina // in "Recent Advances in Information Science and Technology", World Scientific. – Singapore, New Jersey, London, Hong Kong: 1998. – P. 195-198.
36. Krot, A. M. An algorithm for fast polynomial reduction in digital signal processing problems / A. M. Krot, H. B. Minervina // Proc. of 2nd IMACS/IEEE International Conference on: Circuits, Systems and Computers (IMACS-CSC'98). – 1998. – Vol. 2. – P. 827-830.
37. Krot, A. M. The analysis of dynamics of a complicated system state on phase portraits in space of eigenvectors / A. M. Krot, A. A. Boriskevich, V. M. Demko, P. P. Tkachova // in "Recent Advances in Information Science and Technology", World Scientific. – Singapore, New Jersey, London, Hong Kong: 1998. – P. 191-194.
38. Krot, A. M. The analysis of dynamics of a complicated system state on phase portraits in space of eigenvectors / A. M. Krot, A. A. Boriskevich, V. M. Demko, P. P. Tkachova // Proc. of 2nd IMACS/IEEE International Conference on: Circuits, Systems and Computers (IMACS-CSC'98). –1998. –Vol. 2. – P. 874-877.
39. Krot, A. M. Eigen transforms over finite rings in filter bank structures / A. M. Krot, V. O. Kudryavtsev // Proc. of 6th IEEE Intern. Workshop on Intelligent Signal Processing and Communication Systems, 4-6 November / Australia – Melbourne: 1998. – P. 877-880.
40. Krot, A. M. Identification of Discrete 1-D and 2-D input nonlinear systems for digital signal and image processing / A. M. Krot, M. A. Shcherbakov // Proc. of 6th IEEE Intern. Workshop on Intelligent Signal Processing and Communication Systems, 4-6 November / Australia – Melbourne: 1998. – P. 881-885.
41. Krot, A. M. Minimal attractor embedding dimension for discrete dynamic system based on state-space methods / A. M. Krot, H. B. Minervina // Proc. of SPIE 13th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 5-9 April / USA – Orlando, Florida: 1999. – Vol. 3720. – P. 416-422.
42. Krot, A. M. The variability problem solving in speech recognition based on nonlinear filtering / A. M. Krot, P. P. Tkachova // Proc. of SPIE 13th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 5-9 April / USA – Orlando, Florida: 1999. – Vol. 3720. – P. 423-433.
43. Krot, A. M. Use of the statistical model of gravity for analysis of nonhomogeneity in earth surface / A. M. Krot // Proc. of SPIE 13th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 5-9 April / USA – Orlando, Florida: 1999. – Vol. 3710, part 2. – P. 1248-1259.
44. Krot, A. M. The use of nonlinear signal decomposition into functional series for speech recognition / A. M. Krot, P. P. Tkachova // Proc. of the 3rd World Multiconference on: Circuits, Systems, Communications and Computers (IEEE/WSES/ IMACS) CSCC'99. –1999. – Vol. 1. – P. 2281-2286.
45. Krot, A. M. The use of nonlinear signal decomposition into functional series for speech recognition / A. M. Krot // Proc. of the 3rd World Multiconference on: Circuits, Systems, Communications and Computers (IEEE/WSES/ IMACS) CSCC'99. –1999. – Vol. 1. – P. 2291-2296.
46. Krot, A. M. The nonlinear signal decomposition in voice recognition system constructing / A. M. Krot, P. P. Tkachova // Proc. of the Intern. Workshop "Models and analysis of vocal emissions for biomedical applications", 1-3 Sept / Italy – Firenze: 1999. – P. 54-58.
47. Krot, A. M. Minimal attractor embedding dimension for discrete dynamic system using state-space method: theoretical ground / A. M. Krot, H. B. Minervina // Proc. of the 6th IEEE Int. Conf. on Electronics, Circuits and Systems, (ICECS'99), 5-8 Sept. / Cyprus – Pafos: 1999. – Vol. 2. – P. 941-944.
48. Krot, A. M. The development of fast procedures for optimal discrete control problems based on Diophantine equations / A. M. Krot // Proc. of the Artificial Neural Networks in Engineering Conference (ANNIE'99) "Smart engineering system design", 7-10 November / USA – St. Louis, Missouri, New York: ASME Press, 1999. – Vol. 9. – P. 645-651.
49. Krot, A. M. Nonlinear dynamics methods application to electrocardiosignal exploration / A. M. Krot, V. F. Dailyudenko, H. B. Minervina // Proc. of the 5th Intern. Symp. on Signal Processing and its Applications, August 22-25 / Australia. –1999. – Vol. 1. – P. 191-194.
50. Êðîò, À. Ì. Òåîðèÿ àíàëèçà è ñèíòåçà áýíê-ôèëüòðîâ è èõ ïðèìåíåíèå / À. Ì. Êðîò, Â. Î. Êóäðÿâöåâ // Óñïåõè ñîâðåìåííîé ðàäèîýëåêòðîíèêè. – 1999. – ¹ 2. – Ñ. 3-17.
51. Krot, A. M. Statistical description of gravitational field: a new approach / A. M. Krot // Proc. of SPIE 14th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 24-28 April / USA – Orlando, Florida: 2000. – Vol. 4038. – P. 1318-1329.
52. Krot, A. M. Biomedical signal processing based on spectral and chaotic dynamic methods // A. M. Krot, H. B. Minervina // Proc. of SPIE 14th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 24-28 April / USA – Orlando, Florida: 2000. – Vol. 4052. – P. 353-361.
53. Krot, A. M. Speech recognition based on nonlinear signal decomposition / A. M. Krot, P. P. Tkachova // Proc. of SPIE 14th Annual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 24-28 April / USA – Orlando, Florida: 2000. – Vol. 4056. – P. 482-489.
54. Krot, A. M. On approach to speech recognition using nonlinear signal decomposition into Volterra-Wiener functional series / A. M. Krot, P. P. Tkachova // Proc. of the 10th Mediterranean Electrotechnical Conference (Melecon 2000), May 29-31 / Cyprus – 2000. – Vol. 2. – P. 522-525.
55. Krot, A. M. Chaotic dynamic methods based on decomposition of vector functions in vector-matrix series into state-space / A. M. Krot // Proc. of the 10th Mediterranean Electrotechnical Conference (Melecon 2000), May 29-31 / Cyprus – 2000. – Vol. 2. – P. 643-646.
56. Krot, A. M. Biomedical signal processing based on estimation of minimal dimension embedding of chaotic attractor / A. M. Krot, H. B. Minervina // Proc. of the 10th Mediterranean Electrotechnical Conference (Melecon 2000), May 29-31 / Cyprus – 2000. – Vol. 2. – P. 733-736.
57. Krot, A. M. Nonlinear dynamics method based on locally-topological analysis of phase trajectories / A. M. Krot, H. B. Minervina // Proc. of the 4rd World Conf. on: Circuits, Systems, Communications and Computers (IEEE/WSES) CSCC'2000, Vouliagmeni, July 10-15 / Greece – Athens: 2000. – P. 4771-4774.
58. Krot, A. M. The model of slow-gravitating spheroidal body based on statistical approach / A. M. Krot // Proc. of the 2nd World Conf. on: Mathematics&Computers in Physics(MCP'2000), Vouliagmeni, July 10-15 / Greece – Athens: 2000. – P. 5181-5188.
59. Krot, A. M. Nonlinear signal decomposition into functional series for speech recognition: a new approach / A. M. Krot, P. P. Tkachova, B. A. Goncharov // Proc. of X European Signal Processing Conf. (EUSIPCO-2000), 5-8 September / Finland – Tampere: 2000. – Vol. 3. – P. 1285-1288.
60. Krot, A. M. The decomposition of vector functions in vector-matrix series into state-space of nonlinear dynamic system / A. M. Krot // Proc. of X European Signal Processing Conf. (EUSIPCO-2000), 5-8 September / Finland – Tampere: 2000. – Vol. 3. – P. 2453-2456.
61. Krot, A. M. Using linear and nonlinear decompositions in state-space for calculating minimal dimension embedding of chaotic attractor / A. M. Krot, H. B. Minervina // Proc. of X European Signal Processing Conf. (EUSIPCO-2000), 5-8 September / Finland – Tampere: 2000. – Vol. 3. – P. 1613-1616.
62. Krot, A. M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system / A. M. Krot // Nonlinear Phenomena in Complex Systems. – 2001. – Vol. 4, No. 2. – P. 106-115.
63. Krot, A. M. Gravidynamical equations for a weakly graviting spheroidal body / A. M. Krot // Proc. of SPIE 15thAnnual Intern. Symposium on Aerospace / Defense Sensing, Simulation, and Controls (AeroSense), 16-20 April / USA –Orlando, Florida: 2001. – Vol. 4394. – P. 1271-1282.
64. Krot, A. M. On algorithm for phoneme speech recognition using nonlinear signal decomposition / A. M. Krot, P. P. Tkachova, H. B. Minervina // Proc. of the 8th IEEE Intern. Conference on Electronics, Circuits and Systems (ICECS 2001), 2-5 September / Malta: 2001. – P. 1251-1254.
65. Krot, A. M. Minimal attractor embedding estimation based on matrix decomposition for analysis of dynamical systems / A. M. Krot, H. B. Minervina // Nonlinear Phenomena in Complex Systems. –2002. – Vol. 5, No. 2. – P.161-172.
66. Krot, A. M. New approach to speech signal recognition using nonlinear signal decomposition by measuring Wiener kernels / A. M. Krot, P. P. Tkachova, B. A. Goncharov // Smart Engineering System Design. – 2002. – Vol. 4 – P. 265-276.
67. Krot, A. M. Analysis of nonlinear signals based on estimating minimal attractor embedding dimension / A. M. Krot, H. B. Minervina // Proc. of 14th Intern. Conference on Digital Signal Processing (DSP’2002), July 1-3 / Greece – Santorini: 2002. – Vol. 2. – P. 1001-1004.
68. Krot, A. M. Application of expansion into matrix series to analysis of attractors of complex nonlinear dynamical systems / A. M Krot // Proc. of 14th Intern. Conference on Digital Signal Processing (DSP’2002), July 1-3 / Greece – Santorini: 2002. – Vol. 2. – P. 959-962.
69. Krot, A. M. Development of gravidynamical equations for a weakly gravitating body in the vicinity of absolute zero temperature / A. M. Krot // Proc. of 53rd Intern. Astronautical Congress (IAC) - The 2nd World Space Congress (WSC-2002), October 10-19 / USA – Houston, Texas: 2002. – P. 1-11.
70. Krot, A. M. Restoration of dynamical systems attractors and estimation of their geometric characteristics into state-space / A. M. Krot, H. B. Minervina // In: Lecture Notes in Computer Sciences, (Computational Science and Its Applications–ICCSA 2003, May, 2003), Springer / Canada – Montreal: 2003. – Vol. 2667, part 1. – P. 407-416.
71. Krot, A. M. Investigation of geometric shapes of hydrodynamic structures for identification of dynamical states of convective liquid / A. M. Krot, P. P. Tkachova // In: Lecture Notes in Computer Sciences, (Computational Science and Its Applications – ICCSA 2003, May, 2003), Springer / Canada – Montreal: 2003. – Vol. 2667, part 1. – P. 398-406.
72. Krot, A. M. The equations of movement of rotating and gravitating spheroidal body / A. M. Krot // Proc. of 54 Intern. Astronautical Congress (IAC), September 29-October 3 / Germany – Bremen: Preprint IAC-03-J.1.08, 2003. – P. 1-11.
73. Krot, A. M. Estimating the medical state on the basis of characteristics attractor in the reconstructed state-space from electrocardiosignals / A. M. Krot, H. B. Minervina // Proc. of 54 Intern. Astronautical Congress (IAC), September 29-October 3 / Germany – Bremen: Preprint IAC-03-J.1.08, 2003. – P. 1-7.
74. Krot, A. M. The development of model for boundary layers past a concave wall with usage of nonlinear dynamics methods / A. M. Krot, V. A. Baldin. H. B. Minervina // Advances in Space Research. – 2006. – Vol. 37, No. 3. – P. 501-506. (Elsevier Publ. Co., èìïàêò-ôàêòîð æóðíàëà – 1, 409).
75. Krot, A. M. The attractor model for finite length Görtler whirlwinds / A. M. Krot, V. A. Baldin, H. B. Minervina // Electromagnetic Waves and Electronics Systems. – 2006. – Vol. 11, ¹ 2-3 – P. 33-40.
76. Krot, A. M. On the principal difficulties and ways to their solution in the theory of gravitational condensation of infinitely distributed dust substance / A. M. Krot / Proc. of the 2007 IAG General Assembly in the book “Observing our Changing Earth” (Ed. by M.G. Sideris), Springer / Germany – Berlin, Heidelberg: 2009. – Vol.133. – P. 283-292.
77. Krot, A. M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals / A. M. Krot // Proc. of IEEE 16th International Conference on Digital Signal Processing (DSP 2009), July 5-7 / Greece – Thira, Santorini: 2009.
78. Krot, A. M. A statistical approach to investigate the formation of the solar system / A. M. Krot // Chaos, Solitons and Fractals. – 2009. – Vol. 41, ¹ 3. – P. 1481-1500. (Elsevier Publ. Co., èìïàêò-ôàêòîð æóðíàëà – 3,12).
79. Krot, A. M. Self-organization processes in a slow-flowing gravitational compressible cosmological body / A. M. Krot // Selected papers of the CHAOS-2008 International Conference in the book "Topics on Chaotic Systems", World Scientific / Ed. by C.H. Skiadas, I. Dimotikalis, C. Skiadas – Singapore, New Jersey, London, Hong Kong: 2009. – P. 190-198.
80. Krot, A. M. A quantum mechanical approach to description of initial gravitational interactions based on the statistical theory of spheroidal bodies / A. M. Krot // Nonlinear Sci. Lett. A. – 2010. – Vol. 1, No. 4 – P. 329-369.
81. Krot, A. M. Bifurcation analysis of attractors of complex systems based on matrix decomposition theory / A. M. Krot // Proc. of IEEE Intern. Conf. on Industrial Engineering and Management (IEEE IEM 2011), August 12-14 / China – Zhengzhou: 2011.
82. Krot, A. M. A Models of forming planets and distribution of planetary distances and orbits in the solar system based on the statistical theory of spheroidal bodies / A. M. Krot // Chapter in the book “Solar system: structure, formation and exploration” / USA – New York: Nova science publishers, 2012. – P. 201-264.
83. Krot, A. M. A nonlinear Schrödinger-like equation in the statistical theory of spheroidal bodies / A. M. Krot // Chaotic Modeling and Simulation (CMSIM) – 2012. – Vol. 2, No.1. – P. 67-80.
84. Krot, A. M. Nonlinear analysis of the Hopfield network dynamical states using matrix decomposition theory / A. M. Krot, R. A. Prakapovich // Chaotic modeling and simulation. – 2013. – Vol. 1. – P. 133-146.
85. Krot, A. M. A nonlinear Schrödinger-like equation in the statistical theory of formation of cosmological bodies / A. M. Krot // Chapter in the book “Chaos and Complexity Research Compendium” / USA – New York: Nova Science Publishers, 2013. – Vol. 3. – P. 93-112.
86. Krot, A. M. On the universal stellar law for extrasolar systems / A. M. Krot // Planetary and Space Science – 2014. – Vol. 101C. – P. 12-26. (Elsevier Publ. Co., èìïàêò-ôàêòîð æóðíàëà –1, 942).
87. Krot, A. M. Development of the statistical theory of forming cosmogonical bodies to explain a stability of the orbital movements of planets and the forms of planetary orbits / A. M. Krot // 2nd International Conference and Exhibition on Satellite & Space Missions / Germany — Berlin: Journal of Aeronautics & Aerospace Engineering, 2016. — Vol. 5, Issue 2. — P. 45.
88. Krot, A. M. An explanation of stability of extrasolar systems based on the universal stellar law / A. M. Krot // Proceedings of 10th CHAOS Conference, 30 May – 2 June 2017 // Spain: – Barselona.: ed. Christos H. Skiadas – 487 - 504 pp.
89. Krot, À. Ì. The combined Kepler 3rd law with universal stellar law: Derivation and application to extra solar systems investigation / À. Ì.Krot // 3rd International Conference and Exhibition on «Satellite & Space Missions», Barselona, Spain, May11-13, 2017 / Journal of Aeronautics & Aerospace Engineering. – Vol.6, Issue 2. – P. 72.
90. Krot, A.M. Development of the generalized nonlinear Schrödinger equation of rotating cosmogonical body formation/ A.M. Krot // In the book "Complex Systems: Theory and Applications“, Chapter 3. – New York: Nova Science Publishers, 2017, pp.49-94.
91. Krot A.M. Derivation and investigation of the generalized nonlinear Schrödinger equation of cosmogonical body forming. In the book “Mathematical and Numerical Aspects of Dynamical System Analysis”/ Ed. by J. Awrejcewicz et al. – Łódź: ARSA Druk i Reklama, 2017, pp. 277-288.
92.Krot A.M. An explanation of stability of extrasolar systems based on the universal stellar law. Chaotic Modeling and Simulation (CMSIM), 2018, vol. 7, no. 4, pp. 513-529.
93.Krot A. M., Sychou U. A. The analysis of chaoticr egimes in Chua’s circuit with smooth nonlinearity based on the matrix decomposition method. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk =Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2018, vol. 63, no. 4, pp. 501–512 (in Russian); https://doi.org/10.29235/1561-8358-2018-63-4-501-512.
94.Krot A. M., Petrovich O. N., Rusetski I. S. Calculation algorithm of the trajectories of electrons in electrostatic and magnetostatic fields of electron-optical systems. Vests³ Natsyianal'nai akadem³³ navuk Belarus³. Seryia f³z³ka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2019, vol. 55, no. 4, pp. 435–444 (in Russian); https://doi.org/10.29235/1561-2430-2019-55-4-435-444.
95.Krot A. M., Sychou U. A. A spectral analysis of chaotic oscillations in simulation model of Chua’s circuit developed with use of matrix decomposition. Informatics, 2019, vol. 16, no. 1, pp. 7–23 (in Russian).
96.Krot A.M. Analysis of dynamical states of cosmogonical body formation based on the generalized nonlinear Schrodinger-like equation. Chaotic Modeling and Simulation (CMSIM). 2019, vol. 8, no.2 (April issue), pp. 95-107.
97.Krot A.M. An evolutionary model of chaotic wave processes in complex dynamical systems based on the matrix decomposition theory. Dopov³d³ Nac³onal'no¿ akadem³¿ nauk Ukra¿ni=Reports of the National Academy of Sciences of Ukraine, 2019, no. 9, pp. 12–19 (in Russian); https://doi.org/10.15407/ dopovidi2019.09.012
98.Krot A. M., Pavlov S. I. Modeling and nonlinear analysis of chaotic wave processes in electrochemically active neuronal media based on matrix decomposition. Informatics, 2020, vol. 17, no. 3, pp. 7−24 (in Russian); https://doi.org/10.37661/1816-0301-2020-17-3-7-24.
99.Krot À.Ì., Sychou U. A. Investigation of chaotic dynamics of Chua’s circuit implemented by means of the matrix decomposition method. Chaotic Modeling and Simulation (CMSIM), 2020, no.1, pp. 55-73.
100.Krot À.Ì. On the wave solutions of the generalized nonlinear Schrodinger-like equation of formation of a cosmogonical body. In the book “Understanding the Schrodinger Equation: Some [Non]Linear Perspectives”, Chapter 4. – New York: Nova Science Publishers, 2020, pp. 93-133.
101. Krot A.M. "The generalized nonlinear Schrödinger-like equation of cosmogonical body forming: Justification and determination of its particular solutions". Partial Differential Equations in Applied Mathematics., 2022. – Vol. 5 (June), 100376. doi: https://doi.org/10.1016/j.padiff.2022.100376)
102. Krot A.M. "On the Analytical Models of Protoplanetary Formation in Extrasolar Systems". Space: Science & Technology. – 2022. – Article ID 9862389.
103. Êðîò À.Ì., Ñû÷åâ Â.À. "Îá îñîáåííîñòÿõ íåëèíåéíîãî àíàëèçà äèíàìè÷åñêèõ ñèñòåì íà îñíîâå ìåòîäà ìàòðè÷íîé äåêîìïîçèöèè". Âåñ. Íàö. àêàä. íàâóê Áåëàðóñ³. Ñåð. ô³ç.-ìàò. íàâóê. – 2022. – Ò. 58, ¹ 2. – Ñ. 190-207. doi: https://doi.org/10.29235/1561-2430-2022-58-2-190-207).