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A convergence of neural networks training is investigates in this paper. For training
we consider a steepest descent method under the following suppositions:  mean square error

function is Lipschitz continuous. Two new sufficient conditions are derived to ascertain the
neural network training convergence.  

Introduction

Let's consider a neural network consisting from n neural elements of a distributive

layer and m neural elements of a target layer. It maps input vectors 
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 ,   F  is  an  activation  (squashing)  function,

 mjniwij ,1,,1 
 are weights connecting  neurons of the distributive layer to the neurons

of the target layer,  
 mjT j ,1

 is a bias of neural element j. 

A key feature of neural networks is that dependence between their inputs and outputs

is  calculated in a training process. There are two approaches to training - supervised and

unsupervised.  Different  types  of  networks  use  different  types  of  training,  but  supervised

training  is  applied  more  often  and  now  we  shall  consider  this  method.  It  involves  a

mechanism of providing the network with the desired output either by manually "grading" the

network's performance or by providing the desired outputs with the inputs. The network then

processes the inputs and compares its resulting outputs against the desired outputs. Errors are

then propagated back through the system, causing the system to adjust network parameters

(weights and biases) which control the network. This process occurs over and over as the

parameters are ever refined. As a rule a performance function for training is mean square error

- the average squared error between the network outputs 
k

jy
 and the target outputs 

k

jt
. 

There  are  two  different  ways,  in  which  the  gradient  descent  algorithm  can  be

implemented: incremental mode and batch mode. In the incremental mode, the gradient is

computed and the weights are updated after each input is applied to the network. In batch

mode the network parameters  are updated only after the entire training set has been applied to

the network (all of the inputs are applied to the network before the parameters are updated).

The gradients calculated at each training example are added together to determine the change

in the weights and biases. These two methods are often too slow for practical problems. Two

main approaches are known to increase higher performance of training algorithms. The first

one  uses heuristic techniques, which were developed from an analysis of the performance of

the  standard  steepest  descent  algorithm (the  momentum  technique,  variable  learning  rate

backpropagation, resilient backpropagation etc.) [1]. The second approach based on standard

numerical  optimization  techniques  for  neural  network  training:  conjugate  gradient,  quasi-
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Newton and Levenberg-Marquardt etc. [2]. At that, considerable efforts are devoted to the

analysis of the training convergence [3-5]. Absolutely stable neural networks are desirable in

optimization, signal processing and pattern recognition, which have been widely studied in

theory and application [1,6]. 

In this  paper we discuss steepest descent method under different assumption about

mean square error function. Two new sufficient conditions are derived to ascertain the neural

network training convergence, based on the supposition of the Lipschitz continuous of the

error functions.

1. Problem definition

Lets  
   Lkxxx k

n

kk ,1,,1  
  are input patterns from a training set. The training

task of  a neural network with a fixed activation function F consists in finding of weight

factors  
 mjniwij ,1,,1 

 and  biases  of  neural  elements  
 mjT j ,1

,  which  minimize

summary  network error SE
 given as   a deviation of target values  

k

jt
  from corresponding

values 
k

jy
  of each  j-th neuron of the network for k-th pattern. As an error of the network it is

possible to consider mean- square deviation
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,  which we shall name a

network error function.
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 we shall

name an approximate solution or simple a solution of the set of equations by mean deviation

method  
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reaches the least value. It is possible to apply various gradient methods to find the solution,

for example,  the steepest descent method,  a method of the conjugate  gradients and their

modifications [1, 2]. 

Let's consider a method of steepest descent 

       )(1 tWEttWtW S 
 (1)

for  minimization of the network error function  
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The behaviour of this method will be disused under various suppositions  about  
 WES  and

 t .

2. Lipschitz conditions for convergence

Two theorems are proofed below, those are defined the convergence conditions.

Theorem 1. If a gradient of the  function 
 WES  satisfies to Lipschitz condition
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, 
mnmVW  , , L>0, (2)

where 
mnm  denotes (nm+m)- dimensional Euclidean space,  and   t  satisfies to the 

condition 
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then the gradient in (1) aspires to zero: 
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t ,  and function
 WES  decreases 

monotonically : 
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Proof. Considering the relation
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As the condition  (1) is satisfied, then 
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.  Summarizing  the  inequalities
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gradient  of  function 
 WES  aspires  to  zero: 

  0)(lim 


tWES
t ,  and  the  function 

 WES

decreases monotonously: 
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. □



Lemma 1. If the gradient of function 
 WES  satisfies to Lipschitz condition (2), then 

we obtain: 
   WELWE SS  2

2

.

It  is  obvious,  that  the  result  of  lemma  1  is  carried  out  for  any  nonnegative

differentiated  function  xf .  It  means,  that  
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.  Let  consider  the  function
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,  where  a  matrix  A  is  symmetric  and  nonnegative.  If  we  take  into

consideration,  that  function  
   xxAxf ,
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 satisfies  to  conditions  of  lemma  1  and  the

equation   xAxf   takes place, i.e. the condition (1) is satisfied with the constant 
AL 

,

we  obtain   
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  x  for symmetric and nonnegative matrix A . □

Lemma  2. If  
 WES  is  twice  differentiated  convex  function:

     VEWEVWE SSS )1()1(  
,  for  any  W ,V , 10   ,  and  its  gradient
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 satisfies  to  Lipschitz  condition  (1),  then:
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Lemma 3. If function 
 WES  is strongly convex with  constant  :
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Theorem  2. Let  function  
 WES  be  differentiated,  and  its  gradient  satisfies  to

Lipschitz  condition  (1)  and  function  
 WES  is  strongly  convex  with  constant   :
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.  If   t  satisfies to (3), then the method (2)

converges  to  an  unique  point  of  a  global  minimum  
*

W  with  a  speed  of  a  geometrical

progression: 

tcqWtW 
*

)(
10  q .

Proof.  As all conditions of theorem 1 are satisfied, the following inequality is true:
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. Considering, that function 
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a strongly convex with a constant  , then  
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Subtracting  
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WES  from the left and right parts of the inequality (4), we receive
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As  for  a  strongly  convex  function  with  a  constant    we  have
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Conclusion

Two conditions presented herein can be applied for a training wide variety of neural

network. Exact gradient calculation allows for better convergence. We obtained the results for

the given concrete network error function, but the used proof technique can be widespread to

other classes of error functions with obtaining local analogues of the theorems. 
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